
COMP 499 - Final Project

Axel Bogos
Gina Cody School of Engineering

Concordia University
Montreal, QC

a ogos@live.concordia.ca

Abstract

Artificial Intelligence, most notably through deep learn-
ing, has made tremendous advances in the last few
years, achieving ever-higher performances on bench-
mark data sets and outperforming humans on complex
tasks such as image classification on certain data sets.
However, these performances heavily rely on large data
sets for training: generalizing image classification from
a few samples is a much harder task. We explore this
problem through 2 challenges respectively consisting of
learning on limited samples of CIFAR-10 (Krizhevsky
and others 2009) without and with access to external
data. We first review relevant literature on Few-shot
Learning and more briefly review the structure and rea-
soning behind the VGG and Residual networks archi-
tecture. We then propose a simple architecture for learn-
ing without external data which outperforms a compa-
rably heavier model and finally 2 models for few-shot
learning with external data.

Introduction
This document details the two challenges part of the final
project, the methods used as an attempt to solve these chal-
lenges and finally the respective quantitative results obtained
through those methods. This project was completed as part
of COMP 499 at Concordia University as an undergraduate
student. All submissions on Codalab were made under the
username AxelB. Due to unforeseen events, previous team-
members have had to drop this class; hence, this project was
conducted alone. The common objective of these 2 chal-
lenges is to classify images collected from the CIFAR-10
with few training samples; albeit under different constraints
in each challenge.

Literature Review
On Few-shot Learning (FSL)
In their work, Wang et al. present a formal definition of
FSL and a thorough survey and taxonomy of current FSL
methods and their respective issues. In recent years, the con-
vergence of increasingly available computing power, large-
scale data sets such as the aforementioned CIFAR-10 or Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012) and the
use of Convulational Neural Networks (CNNs), Long-short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997)

or more recently the Tranformer architecture through Vision
Tranformer (ViT) (Dosovitskiy et al. 2020) have allowed for
great progress on tasks such as image classification. How-
ever, great performances on large-scale data sets do not nec-
essarily translates into good generalization from a few ex-
amples. Acquiring and labelling such large data sets may be
laborious, and in some cases impossible. For example, pri-
vacy concerns and little data availability are typical issues
leading to a need for Few-Shot learning; both of these are
common in domains like medical data analysis. Following
the notation used by Wang et al., let us define a generic clas-
sification FSL problem as such:
let D = {Dtrain, Dtest}, for Dtrain = {(xi, yi)}Ii=1,
Dtest = {(xtesti , ytesti)}Ti=1, where I is small, I << T and
ytesti is the ground-truth label of xtesti . We will refer to a
problem as an N -way-K-shot problem where I = KN ex-
amples, that is to say K examples of N classes. Our goal
is not unlike typical machine learning problems; that is we
attempt to find hypothesis ĥ, where ĥ is the optimal hypoth-
esis from x to y. To do so, we optimize parameters θ such
that the loss defined as L(ŷ, y) is minimized over the predic-
tions ŷ = h(x, θ) and ground-truths y. In order to achieve
this despite having few training samples which reduces the
learnability of θ, a number of methods are used. To name
but a few, we consider augmenting the data, constraining
the hypothesis search space (for example through multitask
learning) or by modifying our search strategy (for instance
through meta-learning). We give a simplified taxonomy of
such methods in Figure 1. For the purpose of this project,
we mainly explore augmenting data by transforming sam-
ples from the training set, multitask-learning and fine-tuning
existing parameters. The reasons for these respective choices
are further discussed in the Challenge sections, but we ex-
pand a bit on the respective processes here.
Transforming Samples from Dtrain: by applying affine
transforms on a certain percentage of (xi, yi) ∈ Dtrain

batch-wise, we in effect augment our data set and are able to
use the augmented data as prior knowledge to better classify
the original samples (Miller, Matsakis, and Viola 2000). By
extension, we also force the model to learn about invariance
in the data domain. A particularly interesting meta-instance
of such affine transformation procedure is the AutoAugment
implementation showcased by Cubuk et al., where the aug-
mentation procedure is itself learned on different data sets.

We make use of this method in Challenge 1.
Task Invariant Embedding Model: Embedding learning
consists of embedding both xtrain and xtest in a lower-
dimension where they may be more easily discriminated.
In short, the process involves learning a general embedding
function from a large-scale data-set, embed Dtrain and the
few samples Dtest without training, and finally use a simi-
larity metric or kNN classification on those embeddings to
produce a prediction. While this method was considered and
briefly explored for Challenge 2, the following method was
preferred.
Fine-Tuning Existing Parameters with New parameters:
Consider model m, trained on an external data set for which
a set of good parameters θm has been found. Let θm =
θf + θl, where θf is the parameter set of feature layers and
θl is the parameter set of the final linear classifier. Then we
construct the new parameter set θfsl = {θf + θl′}, where
θl′ is a new classifier we train on Dtrain. Therefore we take
advantage of the pre-trained weight parameters by only con-
cerning ourselves with learning a final classifier. Since this
method also requires external data, we make use of it in
Challenge 2.

Figure 1: Taxonomy of FSL Methods. Inspired by Fig.3 of
(Wang et al. 2020).

On the VGG Architecture
The VGG architecture, proposed by Simonyan and Zisser-
man in the 2015 paper Very Deep Convolutional Networks
for Large-Scale Image Recognition achieved state-of-the-
art performances on ImageNet in 2014. Despite not being
in that position now, it remains an interesting architecture
which will be further explored. It involves stacking 2 con-
volutional layers, each having a small 3x3 kernel followed

by a max pooling layer. Each of these 3 layers unit may be
referred to as a VGG block. Denominations such as VGG-
16 or VGG-19 refer to the total number of weight layers,
including the final linear layers.

On ResNet Models

Despite the success of the aforementioned AlexNet and
VGG network architecture, it is clear that continuously in-
creasing the depth of CNN networks is not a viable solution
to increase the capacity of the network going forward; no-
tably because of the vanishing/exploding gradient problem
in deep networks. Residual Networks, presented in (He et
al. 2015) introduce identity shortcut connections as a solu-
tion to this problem. By introducing an identity mapping be-
tween convolutional blocks, access is provided for the gradi-
ents to backpropagate throughout the network without van-
ishing through in the deep hidden layers. Consider a few hid-
den layers of a simple network with input x. Following the
naming convention of He et al., let H(x) be the mapping of
x fitted by these hidden layers. Evidently, all gradients prop-
agated to the first hidden layer of this set have already been
propagated through all layers ahead of it. This may lead to
both vanishing gradients as previously mentioned, or to what
the authors refer to as the degradation problem, where the
stacking of more non-linear layers undermines the estima-
tion of identity mappings. As such, letting the hidden lay-
ers equivalently estimate a mapping of the residual function
H(x)− x and introducing a new identity mapping +x con-
nection (or shortcut) onto the next layer allows the optimiza-
tion process to both backpropagate gradients through the
identity mapping shortcuts and estimate the identity map-
ping itself if need be.
Consequently, this architecture allows the use of much
deeper networks than the VGG architecture, up to 152 layers
in the case of ResNet-152. Each residual block is a sequence
of multiple convolutional layers with a small kernel, feeding
into each other both the convolutional output and the notable
shortcut identity mapping. A depiction of an abstract resid-
ual block is shown in Figure 2

Figure 2: Residual learning block. Recreation of Fig.2 of
(He et al. 2015)

Challenge 1
Overview
Challenge 1 consists of a 10-way-10-shot learning challenge
on 100 samples of the test set of CIFAR-10. Based on the
initial baseline model, we expand on and explore 2 main
modelling architecture and a number of tuning and augmen-
tation methods. We further detail the 2 main architectures
explored and their justification below. Our first architecture
is built upon the original baseline, while our second archi-
tecture makes use of VGG (Simonyan and Zisserman 2015)
blocks in what we will refer to as a VGG-like architecture.
We finally briefly mention other methods that have been con-
sidered but not fully explored.

Architectures Explored
4 Block Convnet Our first attempt on at developing a
model architecture is based on the baseline. As pointed out
in (Hasanpour et al. 2018), simple architectures may achieve
similar performances as heavily-parameterized ones such as
deep VGG nets. Furthermore, such models are also much
less computationally heavy and hence allow for more tun-
ing under limited hardware availability. In addition to that,
highly parameterized architectures are subject to more risks
of over-fitting, particularly in the context of few-shots learn-
ing. Hence, we begin by first exploring a simple convolu-
tional network architecture. This first network architecture
is shown in Figure 3. It is made of 4 convolution layers, each
of which is batch-normalized. A max pool layer is used in-
between convolution layers. Finally, an average pooling and
a linear layer are used for classification. This architecture
provides 113,738 weight parameters. A comparison of the
number of parameters in different models can be found in
Table 2.

Figure 3: ConvNet Architecture - Challenge 1

3 VGG Blocks Our second proposed architecture is based
on the VGG architecture proposed by Simonyan and Zisser-
man. It is composed of 3 VGG-blocks. Each of these block is
composed of 2 stacked convolution layer batch-normalized
between each convolution and a max pool layer. Finally, un-
like typical VGG-architecture, we use 2 linear layers for the

classification. The architecture is represented in Figure 4.
This architecture has a total of 4,646,922 weight parameters
(see Table 2).

Figure 4: 3 VGG block Architecture - Challenge 1

Methods
Our general approach to FSL in challenge 1 is augment data
as much as possible and prevent over-fitting. A shared data
augmentation method has been found to be effective with
both architectures. The data augmentation makes use of the
following torchvision transforms:
• transforms.RandomHorizontalFlip()
• transforms.RandomCrop(size=[32,32],

padding=4,fill=128)
• CIFAR10Policy()
• transforms.ToTensor()
• transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
where CIFAR10Policy() is an implementation of the CIFAR-
10 augmentation policy learned by AutoAugment. By com-
bining these augmentation policy, we are able to artificially
expand our training space state search. Since by randomly
augmenting the data we presumably encounter multiple new
training examples each epoch, we use a warm-restart sched-
uler (from torch.optim.lr scheduler.CosineAnnealingLR) to
bring back our learning rate to its maximum value on each
epoch. For all experiments we ran, we used Stochastic Gra-
dient Descent as the optimizer with Cross-Entropy as the
loss function. For each architecture, a manual binary search
of hyper-parameters was conducted for the initial learning
rate and weight decay. For each parameter run, 10 runs over
different random partitions were averaged in order to evalu-
ate their impact on the accuracy despite high variability. The
result of the parameter search on the learning rate for both
architectures can be found in Table 1. The weight decay was
found to be best left to the initial value for both methods.
While adding dropout layers was considered and evaluated,
their impact on the accuracy was overall negative. We hy-
pothesize that given the relatively low number of learnable

parameters and large data augmentation, such dropout layers
were not warranted to prevent over-fitting and were instead
an unnecessary hurdle to the learning. Each of the models
were trained using a batch size of 128. An overview of all
hyper-parameters can be found in Table 4 in the Appendix.

Results

Table 1: Models’ Accuracy over 10 Random Partitions

Learning Rate 4Block ConvNet Acc. 3Block VGG Acc.

0.01 26.64 ±1.84 31.65 ± 3.27
0.05 32.63 ±3.29 34.86 ± 2.65
0.1 32.70 ±2.31 33.37 ± 2.45
0.2 34.91 ±2.3 32.83 ± 2.41
0.25 33.19 ±2.70 32.49 ± 2.52
0.15 33.03 ±3.83 33.93 ± 2.31

0.175 33.35 ±2.44 33.34 ± 2.40
0.1875 33.39 ±3.33 32.60 ± 3.15

Our overall results in terms of accuracy are shown in
Table 1. We remark that both models’ accuracy under the
best learning rates are very similar, well within their stan-
dard deviation. This goes to show that the 4 block Con-
vNet, despite having much less learnable parameters (40x
less!), performs at a similar level as the VGG-like architec-
ture. The simpler network architecture is also faster to train
over 150 epochs. Under their best learning rates and on a
Google Colab GPU (Tesla P-100), the 3 Block VGG took
8.11s±0.08, the 4 block ConvNet took 7.29s±0.05 and the
baseline 2.47s±0.04, making the former respectively 3.28x
and 2.95x slower than the baseline. Finally, we also point out
that there is a discrepancy between our best result on the fi-
nal random-partition of the test set of CIFAR-10 and our best
score on Codalab (0.309), which was done with the 4 block
ConvNet. This might be explicable by a weaker generaliza-
tion on another test set, if it is the case the one is used for the
evaluation on Codalab. Henceforth, we believe that the next
steps to be taken in order to better our performances would
not necessarily be towards bettering our network architec-
ture but better fine-tuning the data augmentation, scheduling
and regularization. Such improvements may not only ame-
liorate performances over a training of 150 epochs, but also
possibly allow for a longer training (since it would poten-
tially reduce any over-fitting side effect). Further supporting
this intuition is that initial tests using deeper networks such
as a Wide-ResNet on this challenge performed significantly
worse than our simple 4 block ConvNet, although an exten-
sive tuning was not conducted. Finally we briefly mention
methods that have been considered, but not explored to their
fullest

GLICO data augmentation While initially thinking that
augmenting the data of an FSL problem with a generative
model presented a circularity issue (one would assume train-
ing such a model with so few samples is as a hard a problem

as the original FSL problem), the GLICO (Azuri and Wein-
shall 2020) architecture seems very promising for the pur-
pose of augmenting few-samples data-sets in the context of
a FSL problem. Due to time constraints (and having found
this method late into the work), it has been set aside as a
future endeavour.

Table 2: Number of Parameters of proposed architectures
and other architectures for reference

Model Number of Parameters

4 block ConvNet 113,738
3 VGG block 4,646,922

AlexNet 60M
VGG16 138M

Challenge 2
Overview
In Challenge 2, we were asked to reconsider challenge 1, but
this time with the ability to ”use external data or models not
trained on CIFAR-10.” With the addition of this constraint,
our new approach was to experiment with transfer learning
using the VGG-11 and ResNet-18 models pretrained on Im-
agenet. Using these two models provided by the Pytorch
Torchvision Model Repository, the goal was to then fine-
tune the final linear layer of each model on the few-sample
CIFAR-10 data as was previously described in our taxon-
omy of FSL methods. By starting with pretrained feature
layers instead of training from scratch, we hope a signifi-
cantly higher test-accuracy is achievable in similar training
time by making use of the pretrained weights on a similar
task as CIFAR-10.

Methodology
The approach we took was the same for both of the cho-
sen pretrained models. We first downloaded the model from
the PyTorch model repository and reshaped the final layer
such that the number of outputs matched the number of tar-
get dataset classes, which in this case was 10. This means
that we are removing the final fully-connected layer and us-
ing the rest of the pretrained network as fixed feature extrac-
tor for our CIFAR-10 dataset. For all experiments we ran,
we used a Stochastic Gradient Descent as the optimizer with
Cross-Entropy as the loss function. Finally we trained each
model for 20 epochs with 5 different learning rates ranging
from 0.001 to 0.05.

Architectures Explored
Our choice of model from which to operate transfer learn-
ing is two-fold: firstly, each of them have well documented,
robust perfomance on ImageNet, secondly, both of them are
much deeper than networks explored in Challenge 1 while
staying easy to handle on limited hardware.

ResNet-18 ResNet was first introduced by He et al. in
2015 and became an extremely successful architecture for
image classification and related tasks. As discussed before,
what makes this architecture so successful is the introduc-
tion of the residual blocks which help to solve the problem
of vanishing gradients in deep neural networks. The ResNet-
18 architecture consists of 18 layers, upon which the skip-
connections are added, creating 8 residual blocks within the
network. While larger ResNet architectures such as ResNet-
34 or ResNet-50 were also viable options, we have chosen
the smaller ResNet-18 due to the low class count in CIFAR-
10. By choosing a relatively smaller architecture, we can
also achieve lower parameter count and lower computational
expense. As per He et al., ResNet-18 has a top-1 error rate of
27.88% on ImageNet, for an accuracy of 72.12%. ResNet18
has about 11M trainable parameters, which is nearly 27.5x
as many as our best performing architecture in Challenge 1.
While this is quite a high parameter count, in this case it is
not an issue due to the fact that we are using a pretrained
model as opposed to training from scratch. An overview of
the ResNet-18 structure is shown in Table 5 in the Appendix.

VGG-11 bn The VGG-11 architecture makes use of VGG
blocks as previously described, where each block is 2 con-
volutional layer stacked followed by a maxpool. Like the
ResNet-18, we have chosen a relatively smaller version of
the available VGG pretrained network (for instance VGG-
16 or VGG-19) due to the low class count of CIFAR-10
and computational cost. As per PyTorch documentation 1,
VGG-11 batch normalized has a top-1 error rate of 26.70%
on ImageNet, for an accuracy of 73.3%. An overview of the
VGG-11 bn architecture is shown in Table 6.

Results

Figure 5: ResNet-18 Finetuning Accuracies - Challenge 2

We observe that in general, transfer learning from the
VGG-11 model was more successful. Looking at figure 6
above, we see that when finetuning the VGG model, we were
consistently reaching top-accuracy in only a few epochs.
This means that while we trained for 20 epochs, with a

1https://pytorch.org/hub/pytorch vision vgg/

Figure 6: VGG-11 Finetuning Accuracies - Challenge 2

higher learning rate it would only be necessary to train for
5-10 epochs to achieve similar results. Under a single final
testing regime where the learning rate = 0.05 (incidentally
also our best learning rate for our VGG-Like architecture in
Challenge 1), the VGG-11 model was able to attain a mean
validation accuracy over three runs of 60.8%. We also ob-
serve that despite being higher than our results in Challenge
1, our best result here fall short of performances of a sin-
gle model such as ResNet18 or VGG-11 trained on a large
set of either CIFAR-10 or ImageNet. A difficulty encoun-
tered in this challenge was the relative lengthy and resource
consuming process of hyper-parameter tuning. Nevertheless,
our method is quite simple and fast to train given the right
hardware. Although embedding learning has been consid-
ered, initial tests provided poor accuracy and it was decided
not to further explore this method given time and resource
constraints.

Table 3: Mean Top-Accuracies After 20 Epochs

Learning Rate VGG-11 ResNet-18

0.001 36.15 18.15
0.005 53.0 40.55
0.01 58.35 44.50

0.025 58.90 51.0
0.05 60.80 49.60

References
Azuri, I., and Weinshall, D. 2020. Generative latent implicit
conditional optimization when learning from small sample.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2019. Autoaugment: Learning augmentation policies
from data.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2020.

An image is worth 16x16 words: Transformers for image
recognition at scale.
Hasanpour, S. H.; Rouhani, M.; Fayyaz, M.; and Sabokrou,
M. 2018. Lets keep it simple, using simple architectures to
outperform deeper and more complex architectures.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual
learning for image recognition.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Krizhevsky, A., et al. 2009. Learning multiple layers of
features from tiny images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems
25:1097–1105.
Miller, E.; Matsakis, N.; and Viola, P. 2000. Learning from
one example through shared densities on transforms. vol-
ume 1, 464 – 471 vol.1.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition.
Wang, Y.; Yao, Q.; Kwok, J. T.; and Ni, L. M. 2020. Gener-
alizing from a few examples: A survey on few-shot learning.
ACM Computing Surveys (CSUR) 53(3):1–34.

Appendix

Table 4: Challenge 1 Models Best Hyper-parameters’

Hyper param. 4Block ConvNet Acc. 3Block VGG Acc.

Batch size 128 128
Optimizer SGD SGD

Learning rate 0.2 0.05
Weight decay 0.0005 0.0005
Momentum 0.9 0.9

Number of epochs 150 150
Scheduler CosineAnnealingLR CosineAnnealingLR

Table 5: ResNet-18 Architecture
Layer Name Parameters

conv1 7x7, 64, stride 2
max pool 3x3, stride 2
conv2.1 3x3, 64
conv2.2 3x3, 64
conv3.1 3x3, 128
conv3.2 3x3, 128
conv4.1 3x3, 256
conv4.2 3x3, 256
conv5.1 3x3, 256
conv5.2 3x3, 256

average pool, fc, softmax

Table 6: VGG-11 Architecture
Layer Name Parameters

conv 3x3, 64
max pool 3x3

conv 3x3, 128
max pool 3x3

conv 3x3, 256
conv 3x3, 256

max pool 3x3
conv 3x3, 512
conv 3x3, 512

max pool 3x3
conv 3x3, 512
conv 3x3, 512

max pool 3x3
FC 4096
FC 4096
FC 1000

softmax

Challenge1

May 3, 2021

[11]: import torch
import torch.nn as nn
import torch.nn.functional as F
from numpy.random import RandomState
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import Subset
from torchvision import datasets, transforms
import math
from PIL import Image, ImageEnhance, ImageOps
import random
import timeit

Define functions to return datasets & dataloaders and execute train and test
[12]: def load_data_set(transform_train, transform_test):

Final submission, use partitions of the test data set
cifar_data_train = datasets.CIFAR10(root='.',train=False,␣

↪→transform=transform_train, download=True)
cifar_data_test = datasets.CIFAR10(root='.',train=False,␣

↪→transform=transform_val, download=True)

return cifar_data_train, cifar_data_test

def get_data_loaders(train_data,test_data, random_seed, batch_size):
prng = RandomState(random_seed)
random_permute = prng.permutation(np.arange(0, 1000))
indx_train = np.concatenate([np.where(np.array(train_data.targets) ==␣

↪→classe)[0][random_permute[0:10]] for classe in range(0, 10)])
indx_val = np.concatenate([np.where(np.array(test_data.targets) ==␣

↪→classe)[0][random_permute[10:210]] for classe in range(0, 10)])

train_data = Subset(train_data, indx_train)
val_data = Subset(test_data, indx_val)

1

print('Num Samples For Training %d Num Samples For Val %d'%(train_data.
↪→indices.shape[0],val_data.indices.shape[0]))

train_loader = torch.utils.data.DataLoader(train_data,
batch_size=batch_size,
shuffle=True)

val_loader = torch.utils.data.DataLoader(val_data,
batch_size=batch_size,
shuffle=False)

return train_loader, val_loader

def train(model, device, train_loader, optimizer, epoch, display):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
#scheduler.step()

if display:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():

for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).

↪→item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max␣

↪→log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.

↪→format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

return 100. * correct / len(test_loader.dataset)

2

Define the AutoAugment policy. This cannot be imported as of now.

[13]: class CIFAR10Policy(object):
'''
Unofficial implementation of the CIFAR10 Augmentation Policies learned by␣

↪→AutoAugment,
described in this Google AI Blogpost (https://ai.googleblog.com/2018/06/

↪→improving-deep-learning-performance.html).

The implementation is taken from this repository (https://github.com/
↪→DeepVoltaire/AutoAugment)

'''
def __init__(self, fillcolor=(128, 128, 128)):

self.policies = [
SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor),
SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor),
SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor),
SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor),
SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor),

SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor),
SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor),
SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor),
SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor),
SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor),

SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor),
SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor),
SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor),
SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor),
SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor),

SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor),
SubPolicy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor),
SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor),
SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor),
SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor),

SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor),
SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor),
SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor),
SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor),
SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor)

]

def __call__(self, img):

3

policy_idx = random.randint(0, len(self.policies) - 1)
return self.policies[policy_idx](img)

def __repr__(self):
return "AutoAugment CIFAR10 Policy"

class SubPolicy(object):
'''
Unofficial implementation of the CIFAR10 Augmentation Policies learned by␣

↪→AutoAugment,
described in this Google AI Blogpost (https://ai.googleblog.com/2018/06/

↪→improving-deep-learning-performance.html).

The implementation is taken from this repository (https://github.com/
↪→DeepVoltaire/AutoAugment)

'''
def __init__(self, p1, operation1, magnitude_idx1, p2, operation2,␣

↪→magnitude_idx2, fillcolor=(128, 128, 128)):
ranges = {

"shearX": np.linspace(0, 0.3, 10),
"shearY": np.linspace(0, 0.3, 10),
"translateX": np.linspace(0, 150 / 331, 10),
"translateY": np.linspace(0, 150 / 331, 10),
"rotate": np.linspace(0, 30, 10),
"color": np.linspace(0.0, 0.9, 10),
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
"solarize": np.linspace(256, 0, 10),
"contrast": np.linspace(0.0, 0.9, 10),
"sharpness": np.linspace(0.0, 0.9, 10),
"brightness": np.linspace(0.0, 0.9, 10),
"autocontrast": [0] * 10,
"equalize": [0] * 10,
"invert": [0] * 10

}

from https://stackoverflow.com/questions/5252170/
↪→specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand

def rotate_with_fill(img, magnitude):
rot = img.convert("RGBA").rotate(magnitude)
return Image.composite(rot, Image.new("RGBA", rot.size, (128,) *␣

↪→4), rot).convert(img.mode)

func = {
"shearX": lambda img, magnitude: img.transform(

img.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]),␣
↪→0, 0, 1, 0),

4

Image.BICUBIC, fillcolor=fillcolor),
"shearY": lambda img, magnitude: img.transform(

img.size, Image.AFFINE, (1, 0, 0, magnitude * random.
↪→choice([-1, 1]), 1, 0),

Image.BICUBIC, fillcolor=fillcolor),
"translateX": lambda img, magnitude: img.transform(

img.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.
↪→choice([-1, 1]), 0, 1, 0),

fillcolor=fillcolor),
"translateY": lambda img, magnitude: img.transform(

img.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1]␣
↪→* random.choice([-1, 1])),

fillcolor=fillcolor),
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(1 +␣

↪→magnitude * random.choice([-1, 1])),
"posterize": lambda img, magnitude: ImageOps.posterize(img,␣

↪→magnitude),
"solarize": lambda img, magnitude: ImageOps.solarize(img,␣

↪→magnitude),
"contrast": lambda img, magnitude: ImageEnhance.Contrast(img).

↪→enhance(
1 + magnitude * random.choice([-1, 1])),

"sharpness": lambda img, magnitude: ImageEnhance.Sharpness(img).
↪→enhance(

1 + magnitude * random.choice([-1, 1])),
"brightness": lambda img, magnitude: ImageEnhance.Brightness(img).

↪→enhance(
1 + magnitude * random.choice([-1, 1])),

"autocontrast": lambda img, magnitude: ImageOps.autocontrast(img),
"equalize": lambda img, magnitude: ImageOps.equalize(img),
"invert": lambda img, magnitude: ImageOps.invert(img)

}

self.p1 = p1
self.operation1 = func[operation1]
self.magnitude1 = ranges[operation1][magnitude_idx1]
self.p2 = p2
self.operation2 = func[operation2]
self.magnitude2 = ranges[operation2][magnitude_idx2]

def __call__(self, img):
if random.random() < self.p1: img = self.operation1(img, self.

↪→magnitude1)

5

if random.random() < self.p2: img = self.operation2(img, self.
↪→magnitude2)

return img

[18]: use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])

transform_val = transforms.Compose([transforms.ToTensor(), normalize]) #careful␣
↪→to keep this one same

transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=[32,32],␣

↪→padding=4, fill=128),
CIFAR10Policy(),
transforms.ToTensor(),
normalize])

Load Cifar Data
cifar_data_train,cifar_data_test = load_data_set(transform_train,transform_val)

Files already downloaded and verified
Files already downloaded and verified

Define all our models!
[19]: class ConvNet(nn.Module):

def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))

self.layer2 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))

self.layer3 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))

6

self.layer4 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())

self.avgpool = nn.AdaptiveAvgPool2d(1)

self.classifier = nn.Linear(64, 10)

for m in self.modules():
if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode='fan_out',␣
↪→nonlinearity='relu')

elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)

out = self.classifier(out)
return out

[20]: class VGG_Net(torch.nn.Module):
def __init__(self, init_weights=False):

super(VGG_Net, self).__init__()

self.VGG_block1 = nn.Sequential(
nn.Conv2d(3, 128, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=128),
nn.ReLU(inplace=True),
nn.MaxPool2d((2,2)),
nn.Dropout(0.2)
)

self.VGG_block2 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=256),
nn.ReLU(inplace=True),

7

nn.Conv2d(256, 256, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=256),
nn.ReLU(inplace=True),
nn.MaxPool2d((2,2)),
nn.Dropout(0.2)
)

self.VGG_block3 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=(3,3)),
nn.BatchNorm2d(num_features=512),
nn.ReLU(inplace=True),
nn.Dropout(0.2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(512,128),
nn.ReLU(),
nn.Linear(128,10))

if init_weights:
self._initialize_weights()

def forward(self, x):
x = self.VGG_block1(x)
x = self.VGG_block2(x)
x = self.VGG_block3(x)
x = self.classifier(x)
return x

Somehow this seems to make accuracy worst
def _initialize_weights(self):

for m in self.modules():
if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode='fan_out',␣
↪→nonlinearity='relu')

elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

Final test on 4 block ConvNet
[21]: accs = []

times = []
EPOCHS = 150

8

learning_rate = 0.2
for seed in [1,2,3,4,5,6,7,8,9,10]:

train_loader, val_loader =␣
↪→get_data_loaders(cifar_data_train,cifar_data_test,seed,128)

model = ConvNet()
model.to(device)
optimizer = torch.optim.SGD(model.parameters(),

lr=learning_rate, momentum=0.9,
weight_decay=0.0005)

duration = learning_rate * (0.005 ** 3)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, EPOCHS,␣

↪→duration, -1)
start_time = timeit.default_timer()
for epoch in range(EPOCHS):
display_bool = epoch%10==0
train(model, device, train_loader, optimizer, epoch, display=display_bool)
scheduler.step()

elapsed = timeit.default_timer() - start_time
times.append(elapsed)
accs.append(test(model, device, val_loader))

accs = np.array(accs)
times = np.array(times)
print('Acc over 10 instances: %.2f +- %.2f'%(accs.mean(),accs.std()))
print('Training time over 10 instances: %.2f +- %.2f'%(times.mean(),times.
↪→std()))

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.328881
Train Epoch: 10 [0/100 (0%)] Loss: 2.071114
Train Epoch: 20 [0/100 (0%)] Loss: 1.804456
Train Epoch: 30 [0/100 (0%)] Loss: 1.675893
Train Epoch: 40 [0/100 (0%)] Loss: 1.446929
Train Epoch: 50 [0/100 (0%)] Loss: 1.339385
Train Epoch: 60 [0/100 (0%)] Loss: 1.156281
Train Epoch: 70 [0/100 (0%)] Loss: 1.228063
Train Epoch: 80 [0/100 (0%)] Loss: 1.076820
Train Epoch: 90 [0/100 (0%)] Loss: 0.767182
Train Epoch: 100 [0/100 (0%)] Loss: 0.816218
Train Epoch: 110 [0/100 (0%)] Loss: 0.860247
Train Epoch: 120 [0/100 (0%)] Loss: 0.627976
Train Epoch: 130 [0/100 (0%)] Loss: 0.723445
Train Epoch: 140 [0/100 (0%)] Loss: 0.554375

/usr/local/lib/python3.7/dist-packages/torch/nn/_reduction.py:42: UserWarning:
size_average and reduce args will be deprecated, please use reduction='sum'
instead.

9

warnings.warn(warning.format(ret))

Test set: Average loss: 2.2185, Accuracy: 665/2000 (33.25%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.302792
Train Epoch: 10 [0/100 (0%)] Loss: 2.089259
Train Epoch: 20 [0/100 (0%)] Loss: 1.747485
Train Epoch: 30 [0/100 (0%)] Loss: 1.601876
Train Epoch: 40 [0/100 (0%)] Loss: 1.527862
Train Epoch: 50 [0/100 (0%)] Loss: 1.490015
Train Epoch: 60 [0/100 (0%)] Loss: 1.329051
Train Epoch: 70 [0/100 (0%)] Loss: 1.032516
Train Epoch: 80 [0/100 (0%)] Loss: 1.009270
Train Epoch: 90 [0/100 (0%)] Loss: 0.857287
Train Epoch: 100 [0/100 (0%)] Loss: 0.867318
Train Epoch: 110 [0/100 (0%)] Loss: 0.805307
Train Epoch: 120 [0/100 (0%)] Loss: 0.654153
Train Epoch: 130 [0/100 (0%)] Loss: 0.640020
Train Epoch: 140 [0/100 (0%)] Loss: 0.659104

Test set: Average loss: 2.2462, Accuracy: 659/2000 (32.95%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.321607
Train Epoch: 10 [0/100 (0%)] Loss: 2.075875
Train Epoch: 20 [0/100 (0%)] Loss: 1.747978
Train Epoch: 30 [0/100 (0%)] Loss: 1.671037
Train Epoch: 40 [0/100 (0%)] Loss: 1.437350
Train Epoch: 50 [0/100 (0%)] Loss: 1.325777
Train Epoch: 60 [0/100 (0%)] Loss: 1.183336
Train Epoch: 70 [0/100 (0%)] Loss: 0.975102
Train Epoch: 80 [0/100 (0%)] Loss: 0.945320
Train Epoch: 90 [0/100 (0%)] Loss: 0.788731
Train Epoch: 100 [0/100 (0%)] Loss: 0.777531
Train Epoch: 110 [0/100 (0%)] Loss: 0.838944
Train Epoch: 120 [0/100 (0%)] Loss: 0.677615
Train Epoch: 130 [0/100 (0%)] Loss: 0.685333
Train Epoch: 140 [0/100 (0%)] Loss: 0.619270

Test set: Average loss: 2.2205, Accuracy: 695/2000 (34.75%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.342828
Train Epoch: 10 [0/100 (0%)] Loss: 1.925964
Train Epoch: 20 [0/100 (0%)] Loss: 1.723845
Train Epoch: 30 [0/100 (0%)] Loss: 1.600801

10

Train Epoch: 40 [0/100 (0%)] Loss: 1.428645
Train Epoch: 50 [0/100 (0%)] Loss: 1.170405
Train Epoch: 60 [0/100 (0%)] Loss: 1.144084
Train Epoch: 70 [0/100 (0%)] Loss: 1.228412
Train Epoch: 80 [0/100 (0%)] Loss: 0.858264
Train Epoch: 90 [0/100 (0%)] Loss: 0.770229
Train Epoch: 100 [0/100 (0%)] Loss: 0.820433
Train Epoch: 110 [0/100 (0%)] Loss: 0.786189
Train Epoch: 120 [0/100 (0%)] Loss: 0.647721
Train Epoch: 130 [0/100 (0%)] Loss: 0.588705
Train Epoch: 140 [0/100 (0%)] Loss: 0.588794

Test set: Average loss: 2.2159, Accuracy: 715/2000 (35.75%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.326327
Train Epoch: 10 [0/100 (0%)] Loss: 1.996611
Train Epoch: 20 [0/100 (0%)] Loss: 1.671213
Train Epoch: 30 [0/100 (0%)] Loss: 1.432489
Train Epoch: 40 [0/100 (0%)] Loss: 1.376742
Train Epoch: 50 [0/100 (0%)] Loss: 1.179493
Train Epoch: 60 [0/100 (0%)] Loss: 1.143770
Train Epoch: 70 [0/100 (0%)] Loss: 0.872340
Train Epoch: 80 [0/100 (0%)] Loss: 0.918779
Train Epoch: 90 [0/100 (0%)] Loss: 0.973632
Train Epoch: 100 [0/100 (0%)] Loss: 0.893715
Train Epoch: 110 [0/100 (0%)] Loss: 0.707223
Train Epoch: 120 [0/100 (0%)] Loss: 0.598746
Train Epoch: 130 [0/100 (0%)] Loss: 0.799662
Train Epoch: 140 [0/100 (0%)] Loss: 0.730001

Test set: Average loss: 2.5009, Accuracy: 648/2000 (32.40%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.341781
Train Epoch: 10 [0/100 (0%)] Loss: 1.932215
Train Epoch: 20 [0/100 (0%)] Loss: 1.625332
Train Epoch: 30 [0/100 (0%)] Loss: 1.532589
Train Epoch: 40 [0/100 (0%)] Loss: 1.330155
Train Epoch: 50 [0/100 (0%)] Loss: 1.269889
Train Epoch: 60 [0/100 (0%)] Loss: 1.020123
Train Epoch: 70 [0/100 (0%)] Loss: 1.072837
Train Epoch: 80 [0/100 (0%)] Loss: 0.870932
Train Epoch: 90 [0/100 (0%)] Loss: 0.865527
Train Epoch: 100 [0/100 (0%)] Loss: 0.822930
Train Epoch: 110 [0/100 (0%)] Loss: 0.715871
Train Epoch: 120 [0/100 (0%)] Loss: 0.627241
Train Epoch: 130 [0/100 (0%)] Loss: 0.718668

11

Train Epoch: 140 [0/100 (0%)] Loss: 0.502314

Test set: Average loss: 2.1354, Accuracy: 751/2000 (37.55%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.333476
Train Epoch: 10 [0/100 (0%)] Loss: 2.107597
Train Epoch: 20 [0/100 (0%)] Loss: 1.679236
Train Epoch: 30 [0/100 (0%)] Loss: 1.615218
Train Epoch: 40 [0/100 (0%)] Loss: 1.352714
Train Epoch: 50 [0/100 (0%)] Loss: 1.241841
Train Epoch: 60 [0/100 (0%)] Loss: 1.058603
Train Epoch: 70 [0/100 (0%)] Loss: 1.115418
Train Epoch: 80 [0/100 (0%)] Loss: 0.944458
Train Epoch: 90 [0/100 (0%)] Loss: 0.851638
Train Epoch: 100 [0/100 (0%)] Loss: 0.804358
Train Epoch: 110 [0/100 (0%)] Loss: 0.541244
Train Epoch: 120 [0/100 (0%)] Loss: 0.604858
Train Epoch: 130 [0/100 (0%)] Loss: 0.712817
Train Epoch: 140 [0/100 (0%)] Loss: 0.614281

Test set: Average loss: 2.4578, Accuracy: 624/2000 (31.20%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.324522
Train Epoch: 10 [0/100 (0%)] Loss: 2.113816
Train Epoch: 20 [0/100 (0%)] Loss: 1.846896
Train Epoch: 30 [0/100 (0%)] Loss: 1.563382
Train Epoch: 40 [0/100 (0%)] Loss: 1.492098
Train Epoch: 50 [0/100 (0%)] Loss: 1.342601
Train Epoch: 60 [0/100 (0%)] Loss: 1.073540
Train Epoch: 70 [0/100 (0%)] Loss: 1.199202
Train Epoch: 80 [0/100 (0%)] Loss: 1.117634
Train Epoch: 90 [0/100 (0%)] Loss: 0.942020
Train Epoch: 100 [0/100 (0%)] Loss: 0.774025
Train Epoch: 110 [0/100 (0%)] Loss: 0.880215
Train Epoch: 120 [0/100 (0%)] Loss: 0.739152
Train Epoch: 130 [0/100 (0%)] Loss: 0.672294
Train Epoch: 140 [0/100 (0%)] Loss: 0.730151

Test set: Average loss: 2.2828, Accuracy: 674/2000 (33.70%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.344118
Train Epoch: 10 [0/100 (0%)] Loss: 1.842051
Train Epoch: 20 [0/100 (0%)] Loss: 1.629363
Train Epoch: 30 [0/100 (0%)] Loss: 1.579953
Train Epoch: 40 [0/100 (0%)] Loss: 1.562980

12

Train Epoch: 50 [0/100 (0%)] Loss: 1.318424
Train Epoch: 60 [0/100 (0%)] Loss: 1.177732
Train Epoch: 70 [0/100 (0%)] Loss: 1.060522
Train Epoch: 80 [0/100 (0%)] Loss: 0.912594
Train Epoch: 90 [0/100 (0%)] Loss: 0.871638
Train Epoch: 100 [0/100 (0%)] Loss: 0.773438
Train Epoch: 110 [0/100 (0%)] Loss: 0.752173
Train Epoch: 120 [0/100 (0%)] Loss: 0.701181
Train Epoch: 130 [0/100 (0%)] Loss: 0.584612
Train Epoch: 140 [0/100 (0%)] Loss: 0.649081

Test set: Average loss: 2.2710, Accuracy: 645/2000 (32.25%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.374857
Train Epoch: 10 [0/100 (0%)] Loss: 2.006327
Train Epoch: 20 [0/100 (0%)] Loss: 1.827475
Train Epoch: 30 [0/100 (0%)] Loss: 1.663929
Train Epoch: 40 [0/100 (0%)] Loss: 1.402316
Train Epoch: 50 [0/100 (0%)] Loss: 1.451772
Train Epoch: 60 [0/100 (0%)] Loss: 1.333224
Train Epoch: 70 [0/100 (0%)] Loss: 1.143562
Train Epoch: 80 [0/100 (0%)] Loss: 1.102418
Train Epoch: 90 [0/100 (0%)] Loss: 1.144685
Train Epoch: 100 [0/100 (0%)] Loss: 0.937401
Train Epoch: 110 [0/100 (0%)] Loss: 0.987714
Train Epoch: 120 [0/100 (0%)] Loss: 0.985414
Train Epoch: 130 [0/100 (0%)] Loss: 0.875858
Train Epoch: 140 [0/100 (0%)] Loss: 0.731074

Test set: Average loss: 2.1360, Accuracy: 711/2000 (35.55%)

Acc over 10 instances: 33.93 +- 1.84
Training time over 10 instances: 7.05 +- 0.20

Final test on 4 block VGG_Net
[23]: accs = []

times = []
EPOCHS = 150
learning_rate = 0.05
for seed in [1,2,3,4,5,6,7,8,9,10]:

train_loader, val_loader =␣
↪→get_data_loaders(cifar_data_train,cifar_data_test,seed,128)

model = VGG_Net()
model.to(device)
optimizer = torch.optim.SGD(model.parameters(),

13

lr=learning_rate, momentum=0.9,
weight_decay=0.0005)

duration = learning_rate * (0.005 ** 3)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, EPOCHS,␣

↪→duration, -1)
start_time = timeit.default_timer()
for epoch in range(EPOCHS):
display_bool = epoch%10==0
train(model, device, train_loader, optimizer, epoch, display=display_bool)
scheduler.step()

elapsed = timeit.default_timer() - start_time
times.append(elapsed)
accs.append(test(model, device, val_loader))

accs = np.array(accs)
times = np.array(times)
print('Acc over 10 instances: %.2f +- %.2f'%(accs.mean(),accs.std()))
print('Training time over 10 instances: %.2f +- %.2f'%(times.mean(),times.
↪→std()))

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.321645
Train Epoch: 10 [0/100 (0%)] Loss: 1.977180
Train Epoch: 20 [0/100 (0%)] Loss: 1.677113
Train Epoch: 30 [0/100 (0%)] Loss: 1.697210
Train Epoch: 40 [0/100 (0%)] Loss: 1.402687
Train Epoch: 50 [0/100 (0%)] Loss: 1.323851
Train Epoch: 60 [0/100 (0%)] Loss: 1.154911
Train Epoch: 70 [0/100 (0%)] Loss: 0.956166
Train Epoch: 80 [0/100 (0%)] Loss: 0.621303
Train Epoch: 90 [0/100 (0%)] Loss: 0.594957
Train Epoch: 100 [0/100 (0%)] Loss: 0.726405
Train Epoch: 110 [0/100 (0%)] Loss: 0.642328
Train Epoch: 120 [0/100 (0%)] Loss: 0.580420
Train Epoch: 130 [0/100 (0%)] Loss: 0.662785
Train Epoch: 140 [0/100 (0%)] Loss: 0.523455

/usr/local/lib/python3.7/dist-packages/torch/nn/_reduction.py:42: UserWarning:
size_average and reduce args will be deprecated, please use reduction='sum'
instead.

warnings.warn(warning.format(ret))

Test set: Average loss: 2.4527, Accuracy: 644/2000 (32.20%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.312232
Train Epoch: 10 [0/100 (0%)] Loss: 2.001851

14

Train Epoch: 20 [0/100 (0%)] Loss: 1.697603
Train Epoch: 30 [0/100 (0%)] Loss: 1.463761
Train Epoch: 40 [0/100 (0%)] Loss: 1.408589
Train Epoch: 50 [0/100 (0%)] Loss: 1.154686
Train Epoch: 60 [0/100 (0%)] Loss: 0.978711
Train Epoch: 70 [0/100 (0%)] Loss: 0.954801
Train Epoch: 80 [0/100 (0%)] Loss: 0.828743
Train Epoch: 90 [0/100 (0%)] Loss: 0.782550
Train Epoch: 100 [0/100 (0%)] Loss: 0.761894
Train Epoch: 110 [0/100 (0%)] Loss: 0.802367
Train Epoch: 120 [0/100 (0%)] Loss: 0.484565
Train Epoch: 130 [0/100 (0%)] Loss: 0.898101
Train Epoch: 140 [0/100 (0%)] Loss: 0.803677

Test set: Average loss: 2.6416, Accuracy: 659/2000 (32.95%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.322818
Train Epoch: 10 [0/100 (0%)] Loss: 2.054726
Train Epoch: 20 [0/100 (0%)] Loss: 1.718863
Train Epoch: 30 [0/100 (0%)] Loss: 1.679921
Train Epoch: 40 [0/100 (0%)] Loss: 1.187498
Train Epoch: 50 [0/100 (0%)] Loss: 1.190835
Train Epoch: 60 [0/100 (0%)] Loss: 1.268718
Train Epoch: 70 [0/100 (0%)] Loss: 1.086241
Train Epoch: 80 [0/100 (0%)] Loss: 0.679833
Train Epoch: 90 [0/100 (0%)] Loss: 1.091842
Train Epoch: 100 [0/100 (0%)] Loss: 0.791955
Train Epoch: 110 [0/100 (0%)] Loss: 0.687368
Train Epoch: 120 [0/100 (0%)] Loss: 0.555208
Train Epoch: 130 [0/100 (0%)] Loss: 0.749968
Train Epoch: 140 [0/100 (0%)] Loss: 0.660940

Test set: Average loss: 2.3304, Accuracy: 752/2000 (37.60%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.327940
Train Epoch: 10 [0/100 (0%)] Loss: 2.059176
Train Epoch: 20 [0/100 (0%)] Loss: 1.815549
Train Epoch: 30 [0/100 (0%)] Loss: 1.348611
Train Epoch: 40 [0/100 (0%)] Loss: 1.309313
Train Epoch: 50 [0/100 (0%)] Loss: 1.190574
Train Epoch: 60 [0/100 (0%)] Loss: 0.871405
Train Epoch: 70 [0/100 (0%)] Loss: 0.769270
Train Epoch: 80 [0/100 (0%)] Loss: 0.894676
Train Epoch: 90 [0/100 (0%)] Loss: 0.750949
Train Epoch: 100 [0/100 (0%)] Loss: 0.683270
Train Epoch: 110 [0/100 (0%)] Loss: 0.513948

15

Train Epoch: 120 [0/100 (0%)] Loss: 0.614650
Train Epoch: 130 [0/100 (0%)] Loss: 0.649457
Train Epoch: 140 [0/100 (0%)] Loss: 0.513803

Test set: Average loss: 2.4566, Accuracy: 711/2000 (35.55%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.312976
Train Epoch: 10 [0/100 (0%)] Loss: 1.940813
Train Epoch: 20 [0/100 (0%)] Loss: 1.709565
Train Epoch: 30 [0/100 (0%)] Loss: 1.326833
Train Epoch: 40 [0/100 (0%)] Loss: 1.267784
Train Epoch: 50 [0/100 (0%)] Loss: 1.157953
Train Epoch: 60 [0/100 (0%)] Loss: 1.053111
Train Epoch: 70 [0/100 (0%)] Loss: 0.900621
Train Epoch: 80 [0/100 (0%)] Loss: 0.766811
Train Epoch: 90 [0/100 (0%)] Loss: 0.924690
Train Epoch: 100 [0/100 (0%)] Loss: 0.740567
Train Epoch: 110 [0/100 (0%)] Loss: 0.824353
Train Epoch: 120 [0/100 (0%)] Loss: 0.450384
Train Epoch: 130 [0/100 (0%)] Loss: 0.536934
Train Epoch: 140 [0/100 (0%)] Loss: 0.591570

Test set: Average loss: 2.5445, Accuracy: 653/2000 (32.65%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.322575
Train Epoch: 10 [0/100 (0%)] Loss: 2.125710
Train Epoch: 20 [0/100 (0%)] Loss: 1.750500
Train Epoch: 30 [0/100 (0%)] Loss: 1.264611
Train Epoch: 40 [0/100 (0%)] Loss: 1.424606
Train Epoch: 50 [0/100 (0%)] Loss: 1.250599
Train Epoch: 60 [0/100 (0%)] Loss: 0.939110
Train Epoch: 70 [0/100 (0%)] Loss: 0.848734
Train Epoch: 80 [0/100 (0%)] Loss: 0.734567
Train Epoch: 90 [0/100 (0%)] Loss: 0.844955
Train Epoch: 100 [0/100 (0%)] Loss: 0.807697
Train Epoch: 110 [0/100 (0%)] Loss: 0.619958
Train Epoch: 120 [0/100 (0%)] Loss: 0.660349
Train Epoch: 130 [0/100 (0%)] Loss: 0.590745
Train Epoch: 140 [0/100 (0%)] Loss: 0.688726

Test set: Average loss: 2.3699, Accuracy: 754/2000 (37.70%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.340241
Train Epoch: 10 [0/100 (0%)] Loss: 2.074024
Train Epoch: 20 [0/100 (0%)] Loss: 1.748350

16

Train Epoch: 30 [0/100 (0%)] Loss: 1.547470
Train Epoch: 40 [0/100 (0%)] Loss: 1.206303
Train Epoch: 50 [0/100 (0%)] Loss: 1.158733
Train Epoch: 60 [0/100 (0%)] Loss: 0.867207
Train Epoch: 70 [0/100 (0%)] Loss: 0.914654
Train Epoch: 80 [0/100 (0%)] Loss: 0.821548
Train Epoch: 90 [0/100 (0%)] Loss: 0.676306
Train Epoch: 100 [0/100 (0%)] Loss: 0.563781
Train Epoch: 110 [0/100 (0%)] Loss: 0.591518
Train Epoch: 120 [0/100 (0%)] Loss: 0.606856
Train Epoch: 130 [0/100 (0%)] Loss: 0.635555
Train Epoch: 140 [0/100 (0%)] Loss: 0.650764

Test set: Average loss: 2.6262, Accuracy: 623/2000 (31.15%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.334088
Train Epoch: 10 [0/100 (0%)] Loss: 2.050284
Train Epoch: 20 [0/100 (0%)] Loss: 1.814426
Train Epoch: 30 [0/100 (0%)] Loss: 1.600226
Train Epoch: 40 [0/100 (0%)] Loss: 1.482042
Train Epoch: 50 [0/100 (0%)] Loss: 1.223956
Train Epoch: 60 [0/100 (0%)] Loss: 1.231164
Train Epoch: 70 [0/100 (0%)] Loss: 0.999632
Train Epoch: 80 [0/100 (0%)] Loss: 0.858637
Train Epoch: 90 [0/100 (0%)] Loss: 0.773526
Train Epoch: 100 [0/100 (0%)] Loss: 0.797117
Train Epoch: 110 [0/100 (0%)] Loss: 0.689044
Train Epoch: 120 [0/100 (0%)] Loss: 0.818884
Train Epoch: 130 [0/100 (0%)] Loss: 0.486521
Train Epoch: 140 [0/100 (0%)] Loss: 0.611566

Test set: Average loss: 2.4197, Accuracy: 698/2000 (34.90%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.295387
Train Epoch: 10 [0/100 (0%)] Loss: 2.019333
Train Epoch: 20 [0/100 (0%)] Loss: 1.872334
Train Epoch: 30 [0/100 (0%)] Loss: 1.485014
Train Epoch: 40 [0/100 (0%)] Loss: 1.253632
Train Epoch: 50 [0/100 (0%)] Loss: 1.111021
Train Epoch: 60 [0/100 (0%)] Loss: 1.410300
Train Epoch: 70 [0/100 (0%)] Loss: 0.987970
Train Epoch: 80 [0/100 (0%)] Loss: 0.917053
Train Epoch: 90 [0/100 (0%)] Loss: 0.703128
Train Epoch: 100 [0/100 (0%)] Loss: 0.650320
Train Epoch: 110 [0/100 (0%)] Loss: 0.592226
Train Epoch: 120 [0/100 (0%)] Loss: 0.835847

17

Train Epoch: 130 [0/100 (0%)] Loss: 0.644251
Train Epoch: 140 [0/100 (0%)] Loss: 0.527865

Test set: Average loss: 2.3659, Accuracy: 698/2000 (34.90%)

Num Samples For Training 100 Num Samples For Val 2000
Train Epoch: 0 [0/100 (0%)] Loss: 2.304602
Train Epoch: 10 [0/100 (0%)] Loss: 1.981912
Train Epoch: 20 [0/100 (0%)] Loss: 1.682592
Train Epoch: 30 [0/100 (0%)] Loss: 1.609216
Train Epoch: 40 [0/100 (0%)] Loss: 1.353532
Train Epoch: 50 [0/100 (0%)] Loss: 1.097617
Train Epoch: 60 [0/100 (0%)] Loss: 1.016961
Train Epoch: 70 [0/100 (0%)] Loss: 0.893169
Train Epoch: 80 [0/100 (0%)] Loss: 1.042039
Train Epoch: 90 [0/100 (0%)] Loss: 0.920236
Train Epoch: 100 [0/100 (0%)] Loss: 0.678921
Train Epoch: 110 [0/100 (0%)] Loss: 0.650951
Train Epoch: 120 [0/100 (0%)] Loss: 0.716926
Train Epoch: 130 [0/100 (0%)] Loss: 0.724038
Train Epoch: 140 [0/100 (0%)] Loss: 0.507296

Test set: Average loss: 2.2778, Accuracy: 738/2000 (36.90%)

Acc over 10 instances: 34.65 +- 2.22
Training time over 10 instances: 7.40 +- 0.05

[24]: model = ConvNet()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(f'Number of parameters in the 4 block convnet: {params}')
model = VGG_Net()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(f'Number of parameters in the 3 block VGG_Net: {params}')

Number of parameters in the 4 block convnet: 113738
Number of parameters in the 3 block VGG_Net: 4646922

[48]:

18

Challenge2_resnet_finetune

May 3, 2021

[1]: from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Subset
import numpy as np
from numpy.random import RandomState
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

[2]: # Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"

num_classes = 10

num_epochs = 20

feature_extract = True

[3]: def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,␣
↪→is_inception=False):

since = time.time()

val_acc_history = []

best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0

for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)

1

Each epoch has a training and validation phase
for phase in ['train', 'val']:

if phase == 'train':
model.train() # Set model to training mode

else:
model.eval() # Set model to evaluate mode

running_loss = 0.0
running_corrects = 0

Iterate over data.
for inputs, labels in dataloaders[phase]:

inputs = inputs.to(device)
labels = labels.to(device)

zero the parameter gradients
optimizer.zero_grad()

forward
track history if only in train
with torch.set_grad_enabled(phase == 'train'):

Get model outputs and calculate loss
Special case for inception because in training it has an␣

↪→auxiliary output. In train
mode we calculate the loss by summing the final output␣

↪→and the auxiliary output
but in testing we only consider the final output.
if is_inception and phase == 'train':

From https://discuss.pytorch.org/t/
↪→how-to-optimize-inception-model-with-auxiliary-classifiers/7958

outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2

else:
outputs = model(inputs)
loss = criterion(outputs, labels)

_, preds = torch.max(outputs, 1)

backward + optimize only if in training phase
if phase == 'train':

loss.backward()
optimizer.step()

statistics
running_loss += loss.item() * inputs.size(0)

2

running_corrects += torch.sum(preds == labels.data)

epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].

↪→dataset)

print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss,␣
↪→epoch_acc))

deep copy the model
if phase == 'val' and epoch_acc > best_acc:

best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())

if phase == 'val':
val_acc_history.append(epoch_acc)

print()

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60,␣

↪→time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))

load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history

[4]: def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:

for param in model.parameters():
param.requires_grad = False

[5]: def initialize_model(model_name, num_classes, feature_extract,␣
↪→use_pretrained=True):

Initialize these variables which will be set in this if statement. Each␣
↪→of these

variables is model specific.
model_ft = None
input_size = 0

if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features

3

model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224

elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224

else:
print("Invalid model name, exiting...")
exit()

return model_ft, input_size

Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes,␣
↪→feature_extract, use_pretrained=True)

Downloading: "https://download.pytorch.org/models/resnet18-5c106cde.pth" to
/root/.cache/torch/hub/checkpoints/resnet18-5c106cde.pth

HBox(children=(FloatProgress(value=0.0, max=46827520.0), HTML(value='')))

[6]: data_transforms = {
'train': transforms.Compose([

transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),
'val': transforms.Compose([

transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),
}

Cifar Data
cifar_data_train = datasets.CIFAR10(root='.',train=False,␣
↪→transform=data_transforms["train"], download=True)

4

#We need two copies of this due to weird dataset api
cifar_data_test = datasets.CIFAR10(root='.',train=False,␣
↪→transform=data_transforms["val"], download=True)

seed=0
prng = RandomState(seed)
random_permute = prng.permutation(np.arange(0, 1000))
indx_train = np.concatenate([np.where(np.array(cifar_data_train.targets) ==␣
↪→classe)[0][random_permute[0:10]] for classe in range(0, 10)])

indx_val = np.concatenate([np.where(np.array(cifar_data_test.targets) ==␣
↪→classe)[0][random_permute[10:210]] for classe in range(0, 10)])

train_data = Subset(cifar_data_train, indx_train)
val_data = Subset(cifar_data_test, indx_val)

train_loader = torch.utils.data.DataLoader(train_data,
batch_size=128,
shuffle=True)

val_loader = torch.utils.data.DataLoader(val_data,
batch_size=128,
shuffle=False)

dataloaders_dict = {"train":train_loader, "val":val_loader}

Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to
./cifar-10-python.tar.gz

HBox(children=(FloatProgress(value=0.0, max=170498071.0), HTML(value='')))

Extracting ./cifar-10-python.tar.gz to .
Files already downloaded and verified
Device: cuda:0

[7]: # Send the model to GPU
model_ft = model_ft.to(device)

Gather the parameters to be optimized/updated in this run. If we are
finetuning we will be updating all parameters. However, if we are
doing feature extract method, we will only update the parameters
that we have just initialized, i.e. the parameters with requires_grad
is True.

5

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:

params_to_update = []
for name,param in model_ft.named_parameters():

if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)

else:
for name,param in model_ft.named_parameters():

if param.requires_grad == True:
print("\t",name)

optimizer_ft = optim.SGD(params_to_update, lr=0.05, momentum=0.9)

Params to learn:
fc.weight
fc.bias

[8]: criterion = nn.CrossEntropyLoss()

model_ft, hist = train_model(model_ft, dataloaders_dict, criterion,␣
↪→optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

Epoch 0/19

train Loss: 2.5242 Acc: 0.0700
val Loss: 2.5310 Acc: 0.0850

Epoch 1/19

train Loss: 2.4719 Acc: 0.1500
val Loss: 2.4966 Acc: 0.1535

Epoch 2/19

train Loss: 2.5039 Acc: 0.2400
val Loss: 2.2523 Acc: 0.2355

Epoch 3/19

train Loss: 2.2105 Acc: 0.2600
val Loss: 1.8955 Acc: 0.3410

Epoch 4/19

6

train Loss: 1.7238 Acc: 0.5100
val Loss: 2.3710 Acc: 0.1600

Epoch 5/19

train Loss: 2.1212 Acc: 0.1500
val Loss: 1.8747 Acc: 0.4075

Epoch 6/19

train Loss: 1.8863 Acc: 0.4900
val Loss: 2.1997 Acc: 0.4560

Epoch 7/19

train Loss: 1.9853 Acc: 0.6200
val Loss: 2.3796 Acc: 0.4355

Epoch 8/19

train Loss: 2.2908 Acc: 0.5100
val Loss: 2.1852 Acc: 0.4550

Epoch 9/19

train Loss: 1.8797 Acc: 0.6800
val Loss: 1.8977 Acc: 0.4610

Epoch 10/19

train Loss: 1.7121 Acc: 0.6200
val Loss: 1.4710 Acc: 0.4885

Epoch 11/19

train Loss: 1.0902 Acc: 0.7400
val Loss: 1.9581 Acc: 0.3485

Epoch 12/19

train Loss: 1.0881 Acc: 0.6200
val Loss: 2.8084 Acc: 0.2495

Epoch 13/19

train Loss: 1.5558 Acc: 0.4900
val Loss: 1.4513 Acc: 0.4935

7

Epoch 14/19

train Loss: 0.9629 Acc: 0.6600
val Loss: 1.5718 Acc: 0.4780

Epoch 15/19

train Loss: 1.0089 Acc: 0.7100
val Loss: 1.6915 Acc: 0.4750

Epoch 16/19

train Loss: 1.0584 Acc: 0.6900
val Loss: 1.7664 Acc: 0.4675

Epoch 17/19

train Loss: 1.3072 Acc: 0.6300
val Loss: 1.6319 Acc: 0.4960

Epoch 18/19

train Loss: 0.9496 Acc: 0.7500
val Loss: 1.6153 Acc: 0.4770

Epoch 19/19

train Loss: 0.8080 Acc: 0.7600
val Loss: 1.9857 Acc: 0.4075

Training complete in 2m 31s
Best val Acc: 0.496000

[9]: torch.save(model_ft.state_dict(), './resnet_ft_05.pth')

ohist = []

ohist = [h.cpu().numpy() for h in hist]

print(ohist)

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1), ohist, label="LR=0.05")

8

plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.savefig('resnet_finetuned_05.png')
plt.show()

[array(0.085), array(0.1535), array(0.2355), array(0.341), array(0.16),
array(0.4075), array(0.456), array(0.4355), array(0.455), array(0.461),
array(0.4885), array(0.3485), array(0.2495), array(0.4935), array(0.478),
array(0.475), array(0.4675), array(0.496), array(0.477), array(0.4075)]

[10]: accs_001 = [0.116, 0.1145, 0.115, 0.117, 0.121, 0.121, 0.125, 0.1265, 0.126, 0.
↪→1305, 0.13, 0.1345, 0.14, 0.143, 0.1475, 0.153, 0.16, 0.168, 0.169, 0.1815]

accs_005 = [0.1585, 0.1655, 0.1585, 0.1645, 0.169, 0.1855, 0.2125, 0.2415, 0.
↪→264, 0.284, 0.3055, 0.319, 0.3275, 0.347, 0.372, 0.3745, 0.383, 0.3925, 0.
↪→4025, 0.4055]

accs_01 = [0.1235, 0.153, 0.1725, 0.173, 0.181, 0.2195, 0.245, 0.241, 0.257, 0.
↪→285, 0.322, 0.3195, 0.3155, 0.3315, 0.3655, 0.4075, 0.4265, 0.4225, 0.4335,␣
↪→0.445]

accs_025 = [0.09, 0.166, 0.189, 0.235, 0.192, 0.244, 0.354, 0.347, 0.371, 0.
↪→4145, 0.4145, 0.4435, 0.4695, 0.478, 0.4995, 0.518, 0.5105, 0.5025, 0.5055,␣
↪→0.51]

9

accs_05 = [0.085, 0.1535, 0.2355, 0.341, 0.16, 0.4075, 0.456, 0.4355, 0.455, 0.
↪→461, 0.4885, 0.3485, 0.2495, 0.4935, 0.478, 0.475, 0.4675, 0.496, 0.477, 0.
↪→4075]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1), accs_001, label="LR=0.001")
plt.plot(range(1,num_epochs+1), accs_005, label="LR=0.005")
plt.plot(range(1,num_epochs+1), accs_01, label="LR=0.01")
plt.plot(range(1,num_epochs+1), accs_025, label="LR=0.025")
plt.plot(range(1,num_epochs+1), accs_05, label="LR=0.05")

plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.savefig('resnet_ft_all.png')
plt.show()

[]:

10

Challenge2_vgg_finetune

May 3, 2021

[1]: from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Subset
import numpy as np
from numpy.random import RandomState
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

[2]: # Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "vgg"

num_classes = 10

num_epochs = 20

feature_extract = True

[3]: def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,␣
↪→is_inception=False):

since = time.time()

val_acc_history = []

best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0

for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)

1

Each epoch has a training and validation phase
for phase in ['train', 'val']:

if phase == 'train':
model.train() # Set model to training mode

else:
model.eval() # Set model to evaluate mode

running_loss = 0.0
running_corrects = 0

Iterate over data.
for inputs, labels in dataloaders[phase]:

inputs = inputs.to(device)
labels = labels.to(device)

zero the parameter gradients
optimizer.zero_grad()

forward
track history if only in train
with torch.set_grad_enabled(phase == 'train'):

Get model outputs and calculate loss
Special case for inception because in training it has an␣

↪→auxiliary output. In train
mode we calculate the loss by summing the final output␣

↪→and the auxiliary output
but in testing we only consider the final output.
if is_inception and phase == 'train':

From https://discuss.pytorch.org/t/
↪→how-to-optimize-inception-model-with-auxiliary-classifiers/7958

outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2

else:
outputs = model(inputs)
loss = criterion(outputs, labels)

_, preds = torch.max(outputs, 1)

backward + optimize only if in training phase
if phase == 'train':

loss.backward()
optimizer.step()

statistics
running_loss += loss.item() * inputs.size(0)

2

running_corrects += torch.sum(preds == labels.data)

epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].

↪→dataset)

print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss,␣
↪→epoch_acc))

deep copy the model
if phase == 'val' and epoch_acc > best_acc:

best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())

if phase == 'val':
val_acc_history.append(epoch_acc)

print()

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60,␣

↪→time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))

load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history

[4]: def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:

for param in model.parameters():
param.requires_grad = False

[5]: def initialize_model(model_name, num_classes, feature_extract,␣
↪→use_pretrained=True):

model_ft = None
input_size = 0
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224

return model_ft, input_size

Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes,␣
↪→feature_extract, use_pretrained=True)

3

Downloading: "https://download.pytorch.org/models/vgg11_bn-6002323d.pth" to
/root/.cache/torch/hub/checkpoints/vgg11_bn-6002323d.pth

HBox(children=(FloatProgress(value=0.0, max=531503671.0), HTML(value='')))

[6]: data_transforms = {
'train': transforms.Compose([

transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),
'val': transforms.Compose([

transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),
}

Cifar Data
cifar_data_train = datasets.CIFAR10(root='.',train=False,␣
↪→transform=data_transforms["train"], download=True)

#We need two copies of this due to weird dataset api
cifar_data_test = datasets.CIFAR10(root='.',train=False,␣
↪→transform=data_transforms["val"], download=True)

seed=0
prng = RandomState(seed)
random_permute = prng.permutation(np.arange(0, 1000))
indx_train = np.concatenate([np.where(np.array(cifar_data_train.targets) ==␣
↪→classe)[0][random_permute[0:10]] for classe in range(0, 10)])

indx_val = np.concatenate([np.where(np.array(cifar_data_test.targets) ==␣
↪→classe)[0][random_permute[10:210]] for classe in range(0, 10)])

train_data = Subset(cifar_data_train, indx_train)
val_data = Subset(cifar_data_test, indx_val)

train_loader = torch.utils.data.DataLoader(train_data,
batch_size=128,
shuffle=True)

val_loader = torch.utils.data.DataLoader(val_data,
batch_size=128,

4

shuffle=False)

dataloaders_dict = {"train":train_loader, "val":val_loader}

Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to
./cifar-10-python.tar.gz

HBox(children=(FloatProgress(value=0.0, max=170498071.0), HTML(value='')))

Extracting ./cifar-10-python.tar.gz to .
Files already downloaded and verified
Device: cpu

[7]: # Send the model to GPU
model_ft = model_ft.to(device)

Gather the parameters to be optimized/updated in this run. If we are
finetuning we will be updating all parameters. However, if we are
doing feature extract method, we will only update the parameters
that we have just initialized, i.e. the parameters with requires_grad
is True.

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:

params_to_update = []
for name,param in model_ft.named_parameters():

if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)

else:
for name,param in model_ft.named_parameters():

if param.requires_grad == True:
print("\t",name)

optimizer_ft = optim.SGD(params_to_update, lr=0.005, momentum=0.9)

Params to learn:
classifier.6.weight
classifier.6.bias

5

[]: criterion = nn.CrossEntropyLoss()

model_ft, hist = train_model(model_ft, dataloaders_dict, criterion,␣
↪→optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

Epoch 0/19

train Loss: 2.3693 Acc: 0.0800
val Loss: 2.2863 Acc: 0.1300

Epoch 1/19

train Loss: 2.3396 Acc: 0.0900
val Loss: 2.2614 Acc: 0.1710

Epoch 2/19

train Loss: 2.2991 Acc: 0.1000
val Loss: 2.2283 Acc: 0.2130

Epoch 3/19

train Loss: 2.2389 Acc: 0.1600
val Loss: 2.1877 Acc: 0.2700

Epoch 4/19

train Loss: 2.1857 Acc: 0.2900
val Loss: 2.1415 Acc: 0.3310

Epoch 5/19

train Loss: 2.1548 Acc: 0.3000
val Loss: 2.0901 Acc: 0.3825

Epoch 6/19

train Loss: 2.1001 Acc: 0.3500
val Loss: 2.0355 Acc: 0.4320

Epoch 7/19

train Loss: 2.0421 Acc: 0.4500
val Loss: 1.9809 Acc: 0.4690

Epoch 8/19

6

train Loss: 1.9902 Acc: 0.3800
val Loss: 1.9267 Acc: 0.4890

Epoch 9/19

train Loss: 1.9179 Acc: 0.4200
val Loss: 1.8743 Acc: 0.4935

Epoch 10/19

train Loss: 1.8494 Acc: 0.5000

KeyboardInterrupt Traceback (most recent call last)
<ipython-input-8-4b3739047485> in <module>

1 criterion = nn.CrossEntropyLoss()
2

----> 3 model_ft, hist = train_model(model_ft, dataloaders_dict, criterion,␣
↪→optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

<ipython-input-3-391d22e8ca1a> in train_model(model, dataloaders, criterion,␣
↪→optimizer, num_epochs, is_inception)

43 loss = loss1 + 0.4*loss2
44 else:

---> 45 outputs = model(inputs)
46 loss = criterion(outputs, labels)
47

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\modules\module.
↪→py in _call_impl(self, *input, **kwargs)

720 result = self._slow_forward(*input, **kwargs)
721 else:

--> 722 result = self.forward(*input, **kwargs)
723 for hook in itertools.chain(
724 _global_forward_hooks.values(),

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torchvision\models\vgg.
↪→py in forward(self, x)

40
41 def forward(self, x):

---> 42 x = self.features(x)
43 x = self.avgpool(x)
44 x = x.view(x.size(0), -1)

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\modules\module.
↪→py in _call_impl(self, *input, **kwargs)

720 result = self._slow_forward(*input, **kwargs)

7

721 else:
--> 722 result = self.forward(*input, **kwargs)

723 for hook in itertools.chain(
724 _global_forward_hooks.values(),

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\modules\container.
↪→py in forward(self, input)

115 def forward(self, input):
116 for module in self:

--> 117 input = module(input)
118 return input
119

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\modules\module.
↪→py in _call_impl(self, *input, **kwargs)

720 result = self._slow_forward(*input, **kwargs)
721 else:

--> 722 result = self.forward(*input, **kwargs)
723 for hook in itertools.chain(
724 _global_forward_hooks.values(),

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\modules\batchnorm.
↪→py in forward(self, input)

134 self.running_mean if not self.training or self.
↪→track_running_stats else None,

135 self.running_var if not self.training or self.
↪→track_running_stats else None,

--> 136 self.weight, self.bias, bn_training,␣
↪→exponential_average_factor, self.eps)

137
138

~\AppData\Local\Continuum\anaconda3\envs\PytorchPruning\lib\site-packages\torch\nn\functional.
↪→py in batch_norm(input, running_mean, running_var, weight, bias, training,␣
↪→momentum, eps)
2014 return torch.batch_norm(
2015 input, weight, bias, running_mean, running_var,

-> 2016 training, momentum, eps, torch.backends.cudnn.enabled
2017)
2018

KeyboardInterrupt:

8

0.1 See the report for the accurate final picture. A run was started by mistake
and I unfortunately do not have time to re-train

[]: torch.save(model_ft.state_dict(), './vgg_ft_005.pth')

ohist = []

ohist = [h.cpu().numpy() for h in hist]

print(ohist)

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1), ohist, label="LR=0.005")

plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.savefig('vgg_finetuned_005.png')
plt.show()

[array(0.1085), array(0.1045), array(0.1125), array(0.1255), array(0.1355),
array(0.1485), array(0.1615), array(0.1775), array(0.1975), array(0.217),
array(0.241), array(0.2565), array(0.284), array(0.308), array(0.326),
array(0.3445), array(0.3535), array(0.356), array(0.3645), array(0.3615)]

9

[]:

10

